Optimizing Trading Strategies in Quantitative Markets using Multi-Agent Reinforcement Learning

15 Mar 2023  ·  Hengxi Zhang, Zhendong Shi, Yuanquan Hu, Wenbo Ding, Ercan E. Kuruoglu, Xiao-Ping Zhang ·

Quantitative markets are characterized by swift dynamics and abundant uncertainties, making the pursuit of profit-driven stock trading actions inherently challenging. Within this context, reinforcement learning (RL), which operates on a reward-centric mechanism for optimal control, has surfaced as a potentially effective solution to the intricate financial decision-making conundrums presented. This paper delves into the fusion of two established financial trading strategies, namely the constant proportion portfolio insurance (CPPI) and the time-invariant portfolio protection (TIPP), with the multi-agent deep deterministic policy gradient (MADDPG) framework. As a result, we introduce two novel multi-agent RL (MARL) methods, CPPI-MADDPG and TIPP-MADDPG, tailored for probing strategic trading within quantitative markets. To validate these innovations, we implemented them on a diverse selection of 100 real-market shares. Our empirical findings reveal that the CPPI-MADDPG and TIPP-MADDPG strategies consistently outpace their traditional counterparts, affirming their efficacy in the realm of quantitative trading.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods