Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the Adversarial Transferability

The black-box adversarial attack has attracted impressive attention for its practical use in the field of deep learning security. Meanwhile, it is very challenging as there is no access to the network architecture or internal weights of the target model. Based on the hypothesis that if an example remains adversarial for multiple models, then it is more likely to transfer the attack capability to other models, the ensemble-based adversarial attack methods are efficient and widely used for black-box attacks. However, ways of ensemble attack are rather less investigated, and existing ensemble attacks simply fuse the outputs of all the models evenly. In this work, we treat the iterative ensemble attack as a stochastic gradient descent optimization process, in which the variance of the gradients on different models may lead to poor local optima. To this end, we propose a novel attack method called the stochastic variance reduced ensemble (SVRE) attack, which could reduce the gradient variance of the ensemble models and take full advantage of the ensemble attack. Empirical results on the standard ImageNet dataset demonstrate that the proposed method could boost the adversarial transferability and outperforms existing ensemble attacks significantly. Code is available at https://github.com/JHL-HUST/SVRE.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here