State-Aware Tracker for Real-Time Video Object Segmentation

CVPR 2020 Xi ChenZuoxin LiYe YuanGang YuJianxin ShenDonglian Qi

In this work, we address the task of semi-supervised video object segmentation(VOS) and explore how to make efficient use of video property to tackle the challenge of semi-supervision. We propose a novel pipeline called State-Aware Tracker(SAT), which can produce accurate segmentation results with real-time speed... (read more)

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet