Stability Constrained Reinforcement Learning for Real-Time Voltage Control

30 Sep 2021  ·  Yuanyuan Shi, Guannan Qu, Steven Low, Anima Anandkumar, Adam Wierman ·

Deep reinforcement learning (RL) has been recognized as a promising tool to address the challenges in real-time control of power systems. However, its deployment in real-world power systems has been hindered by a lack of formal stability and safety guarantees. In this paper, we propose a stability constrained reinforcement learning method for real-time voltage control in distribution grids and we prove that the proposed approach provides a formal voltage stability guarantee. The key idea underlying our approach is an explicitly constructed Lyapunov function that certifies stability. We demonstrate the effectiveness of the approach in case studies, where the proposed method can reduce the transient control cost by more than 30\% and shorten the response time by a third compared to a widely used linear policy, while always achieving voltage stability. In contrast, standard RL methods often fail to achieve voltage stability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here