Stability-certified reinforcement learning: A control-theoretic perspective

26 Oct 2018  ·  Ming Jin, Javad Lavaei ·

We investigate the important problem of certifying stability of reinforcement learning policies when interconnected with nonlinear dynamical systems. We show that by regulating the input-output gradients of policies, strong guarantees of robust stability can be obtained based on a proposed semidefinite programming feasibility problem. The method is able to certify a large set of stabilizing controllers by exploiting problem-specific structures; furthermore, we analyze and establish its (non)conservatism. Empirical evaluations on two decentralized control tasks, namely multi-flight formation and power system frequency regulation, demonstrate that the reinforcement learning agents can have high performance within the stability-certified parameter space, and also exhibit stable learning behaviors in the long run.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here