Stability Analysis Framework for Particle-based Distance GANs with Wasserstein Gradient Flow

4 Jul 2023  ·  Chuqi Chen, Yue Wu, Yang Xiang ·

In this paper, we investigate the training process of generative networks that use a type of probability density distance named particle-based distance as the objective function, e.g. MMD GAN, Cram\'er GAN, EIEG GAN. However, these GANs often suffer from the problem of unstable training. In this paper, we analyze the stability of the training process of these GANs from the perspective of probability density dynamics. In our framework, we regard the discriminator $D$ in these GANs as a feature transformation mapping that maps high dimensional data into a feature space, while the generator $G$ maps random variables to samples that resemble real data in terms of feature space. This perspective enables us to perform stability analysis for the training of GANs using the Wasserstein gradient flow of the probability density function. We find that the training process of the discriminator is usually unstable due to the formulation of $\min_G \max_D E(G, D)$ in GANs. To address this issue, we add a stabilizing term in the discriminator loss function. We conduct experiments to validate our stability analysis and stabilizing method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here