Speed Benchmarking of Genetic Programming Frameworks

25 May 2021  ·  Francisco Baeta, João Correia, Tiago Martins, Penousal Machado ·

Genetic Programming (GP) is known to suffer from the burden of being computationally expensive by design. While, over the years, many techniques have been developed to mitigate this issue, data vectorization, in particular, is arguably still the most attractive strategy due to the parallel nature of GP. In this work, we employ a series of benchmarks meant to compare both the performance and evolution capabilities of different vectorized and iterative implementation approaches across several existing frameworks. Namely, TensorGP, a novel open-source engine written in Python, is shown to greatly benefit from the TensorFlow library to accelerate the domain evaluation phase in GP. The presented performance benchmarks demonstrate that the TensorGP engine manages to pull ahead, with relative speedups above two orders of magnitude for problems with a higher number of fitness cases. Additionally, as a consequence of being able to compute larger domains, we argue that TensorGP performance gains aid the discovery of more accurate candidate solutions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here