Spectrum Allocation with Adaptive Sub-band Bandwidth for Terahertz Communication Systems

10 Nov 2021  ·  Akram Shafie, Nan Yang, Sheeraz Alvi, Chong Han, Salman Durrani, Josep M. Jornet ·

We study spectrum allocation for terahertz (THz) band communication (THzCom) systems, while considering the frequency and distance-dependent nature of THz channels. Different from existing studies, we explore multi-band-based spectrum allocation with adaptive sub-band bandwidth (ASB) by allowing the spectrum of interest to be divided into sub-bands with unequal bandwidths. Also, we investigate the impact of sub-band assignment on multi-connectivity (MC) enabled THzCom systems, where users associate and communicate with multiple access points simultaneously. We formulate resource allocation problems, with the primary focus on spectrum allocation, to determine sub-band assignment, sub-band bandwidth, and optimal transmit power. Thereafter, we propose reasonable approximations and transformations, and develop iterative algorithms based on the successive convex approximation technique to analytically solve the formulated problems. Aided by numerical results, we show that by enabling and optimizing ASB, significantly higher throughput can be achieved as compared to adopting equal sub-band bandwidth, and this throughput gain is most profound when the power budget constraint is more stringent. We also show that our sub-band assignment strategy in MC-enabled THzCom systems outperforms the state-of-the-art sub-band assignment strategies and the performance gain is most profound when the spectrum with the lowest average molecular absorption coefficient is selected during spectrum allocation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here