Spectral Koopman Method for Identifying Stability Boundary

11 Dec 2023  ·  Bhagyashree Umathe, Umesh Vaidya ·

The paper is about characterizing the stability boundary of an autonomous dynamical system using the Koopman spectrum. For a dynamical system with an asymptotically stable equilibrium point, the domain of attraction constitutes a region consisting of all initial conditions attracted to the equilibrium point. The stability boundary is a separatrix region that separates the domain of attraction from the rest of the state space. For a large class of dynamical systems, this stability boundary consists of the union of stable manifolds of all the unstable equilibrium points on the stability boundary. We characterize the stable manifold in terms of the zero-level curve of the Koopman eigenfunction. A path-integral formula is proposed to compute the Koopman eigenfunction for a saddle-type equilibrium point on the stability boundary. The algorithm for identifying stability boundary based on the Koopman eigenfunction is attractive as it does not involve explicit knowledge of system dynamics. We present simulation results to verify the main results of the paper.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here