Spatial-temporal associations representation and application for process monitoring using graph convolution neural network

11 May 2022  ·  Hao Ren, Xiaojun Liang, Chunhua Yang, Zhiwen Chen, Weihua Gui ·

Thank you very much for the attention and concern of colleagues and scholars in this work. With the comments and guidance of experts, editors, and reviewers, this work has been accepted for publishing in the journal "Process Safety and Environmental Protection". The theme of this paper relies on the Spatial-temporal associations of numerous variables in the same industrial processes, which refers to numerous variables obtained in dynamic industrial processes with Spatial-temporal correlation characteristics, i.e., these variables are not only highly correlated in time but also interrelated in space. To handle this problem, three key issues need to be well addressed: variable characteristics modeling and representation, graph network construction (temporal information), and graph characteristics perception. The first issue is implemented by assuming the data follows one improved Gaussian distribution, while the graph network can be defined by the monitoring variables and their edges which are calculated by their characteristics in time. Finally, these networks corresponding to process states at different times are fed into a graph convolutional neural network to implement graph classification to achieve process monitoring. A benchmark experiment (Tennessee Eastman chemical process) and one application study (cobalt purification from zinc solution) are employed to demonstrate the feasibility and applicability of this paper.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods