Spatial-Spectral Residual Network for Hyperspectral Image Super-Resolution

14 Jan 2020  ·  Qi. Wang, Qiang Li, Xuelong. Li ·

Deep learning-based hyperspectral image super-resolution (SR) methods have achieved great success recently. However, most existing models can not effectively explore spatial information and spectral information between bands simultaneously, obtaining relatively low performance. To address this issue, in this paper, we propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet). Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information. Furthermore, we design a spectral-spatial residual module (SSRM) to adaptively learn more effective features from all the hierarchical features in units through local feature fusion, significantly improving the performance of the algorithm. In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train. Extensive evaluations and comparisons on three benchmark datasets demonstrate that the proposed approach achieves superior performance in comparison to existing state-of-the-art methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods