Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface (BCI)

9 Feb 2017  ·  Dongrui Wu, Jung-Tai King, Chun-Hsiang Chuang, Chin-Teng Lin, Tzyy-Ping Jung ·

Electroencephalogram (EEG) signals are frequently used in brain-computer interfaces (BCIs), but they are easily contaminated by artifacts and noises, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely used to increase the signal-to-noise ratio of EEG for BCI classification problems, but their applications in BCI regression problems have been very limited. This paper proposes two common spatial pattern (CSP) filters for EEG-based regression problems in BCI, which are extended from the CSP filter for classification, by making use of fuzzy sets. Experimental results on EEG-based response speed estimation from a large-scale study, which collected 143 sessions of sustained-attention psychomotor vigilance task data from 17 subjects during a 5-month period, demonstrate that the two proposed spatial filters can significantly increase the EEG signal quality. When used in LASSO and k-nearest neighbors regression for user response speed estimation, the spatial filters can reduce the root mean square estimation error by 10.02-19.77%, and at the same time increase the correlation to the true response speed by 19.39-86.47%.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods