Spatial and temporal dynamics of an almost periodic reaction-diffusion system for West Nile virus

22 Dec 2020  ·  Chengcheng Cheng, Zuohuan Zheng ·

In current paper, we put forward a reaction-diffusion system for West Nile virus in spatial heterogeneous and time almost periodic environment with free boundaries to investigate the influences of the habitat differences and seasonal variations on the propagation of West Nile virus. The existence, uniqueness and regularity estimates of the global solution for this disease model are given. Focused on the effects of spatial heterogeneity and time almost periodicity, we apply the principal Lyapunov exponent $\lambda(t)$ with time $t$ to get the initial infected domain threshold $L^*$ to analyze the long-time dynamical behaviors of the solution for this almost periodic West Nile virus model and give the spreading-vanishing dichotomy regimes of the disease. Especially, we prove that the solution for this West Nile virus model converges to a time almost periodic function locally uniformly for $x$ in $\mathbb R$ when the spreading occurs, which is driven by spatial differences and seasonal recurrence. Moreover, the initial disease infected domain and the front expanding rate have momentous impacts on the permanence and extinction of the epidemic disease. Eventually, numerical simulations identify our theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Analysis of PDEs Dynamical Systems