Sparse Recovery with Brownian Sensing

We consider the problem of recovering the parameter alpha in R^K of a sparse function f, i.e. the number of non-zero entries of alpha is small compared to the number K of features, given noisy evaluations of f at a set of well-chosen sampling points. We introduce an additional randomisation process, called Brownian sensing, based on the computation of stochastic integrals, which produces a Gaussian sensing matrix, for which good recovery properties are proven independently on the number of sampling points N, even when the features are arbitrarily non-orthogonal. Under the assumption that f is Hölder continuous with exponent at least 1/2, we provide an estimate a of the parameter such that ||\alpha - a||_2 = O(||eta||_2\sqrt{N}), where eta is the observation noise. The method uses a set of sampling points uniformly distributed along a one-dimensional curve selected according to the features. We report numerical experiments illustrating our method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here