Sparse identification of nonlinear dynamics in the presence of library and system uncertainty

23 Jan 2024  ·  Andrew O'Brien ·

The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. However, SINDy assumes the user has prior knowledge of the variables in the system and of a function library that can act as a basis for the system. In this paper, we demonstrate on real world data how the Augmented SINDy algorithm outperforms SINDy in the presence of system variable uncertainty. We then show SINDy can be further augmented to perform robustly when both kinds of uncertainty are present.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods