Solving Regularized Exp, Cosh and Sinh Regression Problems

28 Mar 2023  ·  Zhihang Li, Zhao Song, Tianyi Zhou ·

In modern machine learning, attention computation is a fundamental task for training large language models such as Transformer, GPT-4 and ChatGPT. In this work, we study exponential regression problem which is inspired by the softmax/exp unit in the attention mechanism in large language models. The standard exponential regression is non-convex. We study the regularization version of exponential regression problem which is a convex problem. We use approximate newton method to solve in input sparsity time. Formally, in this problem, one is given matrix $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$, $w \in \mathbb{R}^n$ and any of functions $\exp, \cosh$ and $\sinh$ denoted as $f$. The goal is to find the optimal $x$ that minimize $ 0.5 \| f(Ax) - b \|_2^2 + 0.5 \| \mathrm{diag}(w) A x \|_2^2$. The straightforward method is to use the naive Newton's method. Let $\mathrm{nnz}(A)$ denote the number of non-zeros entries in matrix $A$. Let $\omega$ denote the exponent of matrix multiplication. Currently, $\omega \approx 2.373$. Let $\epsilon$ denote the accuracy error. In this paper, we make use of the input sparsity and purpose an algorithm that use $\log ( \|x_0 - x^*\|_2 / \epsilon)$ iterations and $\widetilde{O}(\mathrm{nnz}(A) + d^{\omega} )$ per iteration time to solve the problem.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods