Solving localized wave solutions of the derivative nonlinear Schrodinger equation using an improved PINN method

21 Jan 2021  ·  Juncai Pu, Jun Li, Yong Chen ·

The solving of the derivative nonlinear Schrodinger equation (DNLS) has attracted considerable attention in theoretical analysis and physical applications. Based on the physics-informed neural network (PINN) which has been put forward to uncover dynamical behaviors of nonlinear partial different equation from spatiotemporal data directly, an improved PINN method with neuron-wise locally adaptive activation function is presented to derive localized wave solutions of the DNLS in complex space. In order to compare the performance of above two methods, we reveal the dynamical behaviors and error analysis for localized wave solutions which include one-rational soliton solution, genuine rational soliton solutions and rogue wave solution of the DNLS by employing two methods, also exhibit vivid diagrams and detailed analysis. The numerical results demonstrate the improved method has faster convergence and better simulation effect. On the bases of the improved method, the effects for different numbers of initial points sampled, residual collocation points sampled, network layers, neurons per hidden layer on the second order genuine rational soliton solution dynamics of the DNLS are considered, and the relevant analysis when the locally adaptive activation function chooses different initial values of scalable parameters are also exhibited in the simulation of the two-order rogue wave solution.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Pattern Formation and Solitons Exactly Solvable and Integrable Systems