Soft-constrained Schrodinger Bridge: a Stochastic Control Approach

4 Mar 2024  ·  Jhanvi Garg, Xianyang Zhang, Quan Zhou ·

Schr\"{o}dinger bridge can be viewed as a continuous-time stochastic control problem where the goal is to find an optimally controlled diffusion process whose terminal distribution coincides with a pre-specified target distribution. We propose to generalize this problem by allowing the terminal distribution to differ from the target but penalizing the Kullback-Leibler divergence between the two distributions. We call this new control problem soft-constrained Schr\"{o}dinger bridge (SSB). The main contribution of this work is a theoretical derivation of the solution to SSB, which shows that the terminal distribution of the optimally controlled process is a geometric mixture of the target and some other distribution. This result is further extended to a time series setting. One application is the development of robust generative diffusion models. We propose a score matching-based algorithm for sampling from geometric mixtures and showcase its use via a numerical example for the MNIST data set.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods