Smooth Non-Stationary Bandits

29 Jan 2023  ·  Su Jia, Qian Xie, Nathan Kallus, Peter I. Frazier ·

In many applications of online decision making, the environment is non-stationary and it is therefore crucial to use bandit algorithms that handle changes. Most existing approaches are designed to protect against non-smooth changes, constrained only by total variation or Lipschitzness over time, where they guarantee $\tilde \Theta(T^{2/3})$ regret. However, in practice environments are often changing {\bf smoothly}, so such algorithms may incur higher-than-necessary regret in these settings and do not leverage information on the rate of change. We study a non-stationary two-armed bandits problem where we assume that an arm's mean reward is a $\beta$-H\"older function over (normalized) time, meaning it is $(\beta-1)$-times Lipschitz-continuously differentiable. We show the first separation between the smooth and non-smooth regimes by presenting a policy with $\tilde O(T^{3/5})$ regret for $\beta=2$. We complement this result by an $\Omg(T^{(\beta+1)/(2\beta+1)})$ lower bound for any integer $\beta\ge 1$, which matches our upper bound for $\beta=2$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here