Smart Ternary Quantization

25 Sep 2019  ·  Gregoire Morin, Ryan Razani, Vahid Partovi Nia, Eyyub Sari ·

Neural network models are resource hungry. Low bit quantization such as binary and ternary quantization is a common approach to alleviate this resource requirements. Ternary quantization provides a more flexible model and often beats binary quantization in terms of accuracy, but doubles memory and increases computation cost. Mixed quantization depth models, on another hand, allows a trade-off between accuracy and memory footprint. In such models, quantization depth is often chosen manually (which is a tiring task), or is tuned using a separate optimization routine (which requires training a quantized network multiple times). Here, we propose Smart Ternary Quantization (STQ) in which we modify the quantization depth directly through an adaptive regularization function, so that we train a model only once. This method jumps between binary and ternary quantization while training. We show its application on image classification.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here