Small protein number effects in stochastic models of autoregulated bursty gene expression

8 Jan 2020  ·  Chen Jia, Ramon Grima ·

A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fluctuations in protein numbers due to reversible protein-promoter binding can be ignored. Here we derive an alternative model that takes into account these fluctuations and hence can be used to study low protein number effects. The exact steady-state protein number distributions is derived as a sum of Gaussian hypergeometric functions. We use the theory to study how promoter switching rates and the type of feedback influence the size of protein noise and noise-induced bistability. Furthermore we show that our model predictions for the protein number distribution are significantly different from those of Kumar et al. when the protein mean is small, gene switching is fast, and protein binding is faster than unbinding.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here