Small Area Estimation of Case Growths for Timely COVID-19 Outbreak Detection

7 Dec 2023  ·  Zhaowei She, Zilong Wang, Jagpreet Chhatwal, Turgay Ayer ·

The COVID-19 pandemic has exerted a profound impact on the global economy and continues to exact a significant toll on human lives. The COVID-19 case growth rate stands as a key epidemiological parameter to estimate and monitor for effective detection and containment of the resurgence of outbreaks. A fundamental challenge in growth rate estimation and hence outbreak detection is balancing the accuracy-speed tradeoff, where accuracy typically degrades with shorter fitting windows. In this paper, we develop a machine learning (ML) algorithm, which we call Transfer Learning Generalized Random Forest (TLGRF), that balances this accuracy-speed tradeoff. Specifically, we estimate the instantaneous COVID-19 exponential growth rate for each U.S. county by using TLGRF that chooses an adaptive fitting window size based on relevant day-level and county-level features affecting the disease spread. Through transfer learning, TLGRF can accurately estimate case growth rates for counties with small sample sizes. Out-of-sample prediction analysis shows that TLGRF outperforms established growth rate estimation methods. Furthermore, we conducted a case study based on outbreak case data from the state of Colorado and showed that the timely detection of outbreaks could have been improved by up to 224% using TLGRF when compared to the decisions made by Colorado's Department of Health and Environment (CDPHE). To facilitate implementation, we have developed a publicly available outbreak detection tool for timely detection of COVID-19 outbreaks in each U.S. county, which received substantial attention from policymakers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here