SLFNet: Generating Semantic Logic Forms from Natural Language Using Semantic Probability Graphs

29 Mar 2024  ·  Hao Wu, Fan Xu ·

Building natural language interfaces typically uses a semantic parser to parse the user's natural language and convert it into structured \textbf{S}emantic \textbf{L}ogic \textbf{F}orms (SLFs). The mainstream approach is to adopt a sequence-to-sequence framework, which requires that natural language commands and SLFs must be represented serially. Since a single natural language may have multiple SLFs or multiple natural language commands may have the same SLF, training a sequence-to-sequence model is sensitive to the choice among them, a phenomenon recorded as "order matters". To solve this problem, we propose a novel neural network, SLFNet, which firstly incorporates dependent syntactic information as prior knowledge and can capture the long-range interactions between contextual information and words. Secondly construct semantic probability graphs to obtain local dependencies between predictor variables. Finally we propose the Multi-Head SLF Attention mechanism to synthesize SLFs from natural language commands based on Sequence-to-Slots. Experiments show that SLFNet achieves state-of-the-art performance on the ChineseQCI-TS and Okapi datasets, and competitive performance on the ATIS dataset.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here