Skin Lesion Synthesis with Generative Adversarial Networks

8 Feb 2019  ·  Alceu Bissoto, Fábio Perez, Eduardo Valle, Sandra Avila ·

Skin cancer is by far the most common type of cancer. Early detection is the key to increase the chances for successful treatment significantly... Currently, Deep Neural Networks are the state-of-the-art results on automated skin cancer classification. To push the results further, we need to address the lack of annotated data, which is expensive and require much effort from specialists. To bypass this problem, we propose using Generative Adversarial Networks for generating realistic synthetic skin lesion images. To the best of our knowledge, our results are the first to show visually-appealing synthetic images that comprise clinically-meaningful information. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here