Simultaneous Synthesis and Verification of Neural Control Barrier Functions through Branch-and-Bound Verification-in-the-loop Training

17 Nov 2023  ·  Xinyu Wang, Luzia Knoedler, Frederik Baymler Mathiesen, Javier Alonso-Mora ·

Control Barrier Functions (CBFs) that provide formal safety guarantees have been widely used for safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has shown great success, but it necessitates their certification as CBFs. In this work, we leverage bound propagation techniques and the Branch-and-Bound scheme to efficiently verify that a neural network satisfies the conditions to be a CBF over the continuous state space. To accelerate training, we further present a framework that embeds the verification scheme into the training loop to synthesize and verify a neural CBF simultaneously. In particular, we employ the verification scheme to identify partitions of the state space that are not guaranteed to satisfy the CBF conditions and expand the training dataset by incorporating additional data from these partitions. The neural network is then optimized using the augmented dataset to meet the CBF conditions. We show that for a non-linear control-affine system, our framework can efficiently certify a neural network as a CBF and render a larger safe set than state-of-the-art neural CBF works. We further employ our learned neural CBF to derive a safe controller to illustrate the practical use of our framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here