Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning

NeurIPS 2014  ·  Francesco Orabona ·

Stochastic gradient descent algorithms for training linear and kernel predictors are gaining more and more importance, thanks to their scalability. While various methods have been proposed to speed up their convergence, the model selection phase is often ignored. In fact, in theoretical works most of the time assumptions are made, for example, on the prior knowledge of the norm of the optimal solution, while in the practical world validation methods remain the only viable approach. In this paper, we propose a new kernel-based stochastic gradient descent algorithm that performs model selection while training, with no parameters to tune, nor any form of cross-validation. The algorithm builds on recent advancement in online learning theory for unconstrained settings, to estimate over time the right regularization in a data-dependent way. Optimal rates of convergence are proved under standard smoothness assumptions on the target function, using the range space of the fractional integral operator associated with the kernel.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods