Simulating Structural Plasticity of the Brain more Scalable than Expected

11 Oct 2022  ·  Fabian Czappa, Alexander Geiß, Felix Wolf ·

Structural plasticity of the brain describes the creation of new and the deletion of old synapses over time. Rinke et al. (JPDC 2018) introduced a scalable algorithm that simulates structural plasticity for up to one billion neurons on current hardware using a variant of the Barnes-Hut algorithm. They demonstrate good scalability and prove a runtime complexity of $O(n \log^2 n)$. In this comment paper, we show that with careful consideration of the algorithm and a rigorous proof, the theoretical runtime can even be classified as $O(n \log n)$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here