Simulated annealing from continuum to discretization: a convergence analysis via the Eyring--Kramers law

3 Feb 2021  ·  Wenpin Tang, Xun Yu Zhou ·

We study the convergence rate of continuous-time simulated annealing $(X_t; \, t \ge 0)$ and its discretization $(x_k; \, k =0,1, \ldots)$ for approximating the global optimum of a given function $f$. We prove that the tail probability $\mathbb{P}(f(X_t) > \min f +\delta)$ (resp. $\mathbb{P}(f(x_k) > \min f +\delta)$) decays polynomial in time (resp. in cumulative step size), and provide an explicit rate as a function of the model parameters. Our argument applies the recent development on functional inequalities for the Gibbs measure at low temperatures -- the Eyring-Kramers law. In the discrete setting, we obtain a condition on the step size to ensure the convergence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here