Simplifying Full Waveform Inversion via Domain-Independent Self-Supervised Learning

27 Apr 2023  ·  Yinan Feng, Yinpeng Chen, Peng Jin, Shihang Feng, Zicheng Liu, Youzuo Lin ·

Geophysics has witnessed success in applying deep learning to one of its core problems: full waveform inversion (FWI) to predict subsurface velocity maps from seismic data. It is treated as an image-to-image translation problem, jointly training an encoder for seismic data and a decoder for the velocity map from seismic-velocity pairs. In this paper, we report a surprising phenomenon: when training an encoder and decoder separately in their own domains via self-supervised learning, a linear relationship is observed across domains in the latent spaces. Moreover, this phenomenon connects multiple FWI datasets in an elegant manner: these datasets can share the self-learned encoder and decoder with different linear mappings. Based on these findings, we develop SimFWI, a new paradigm that includes two steps: (a) learning a seismic encoder and a velocity decoder separately by masked image modeling over multiple datasets; (b) learning a linear mapping per dataset. Experimental results show that SimFWI can achieve comparable results to a jointly trained model from the supervision of paired seismic data and velocity maps.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here