SICRN: Advancing Speech Enhancement through State Space Model and Inplace Convolution Techniques

22 Feb 2024  ·  Changjiang Zhao, Shulin He, Xueliang Zhang ·

Speech enhancement aims to improve speech quality and intelligibility, especially in noisy environments where background noise degrades speech signals. Currently, deep learning methods achieve great success in speech enhancement, e.g. the representative convolutional recurrent neural network (CRN) and its variants. However, CRN typically employs consecutive downsampling and upsampling convolution for frequency modeling, which destroys the inherent structure of the signal over frequency. Additionally, convolutional layers lacks of temporal modelling abilities. To address these issues, we propose an innovative module combing a State space model and Inplace Convolution (SIC), and to replace the conventional convolution in CRN, called SICRN. Specifically, a dual-path multidimensional State space model captures the global frequencies dependency and long-term temporal dependencies. Meanwhile, the 2D-inplace convolution is used to capture the local structure, which abandons the downsampling and upsampling. Systematic evaluations on the public INTERSPEECH 2020 DNS challenge dataset demonstrate SICRN's efficacy. Compared to strong baselines, SICRN achieves performance close to state-of-the-art while having advantages in model parameters, computations, and algorithmic delay. The proposed SICRN shows great promise for improved speech enhancement.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods