Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

19 Oct 2021  ·  Yu Song, Jianxun Lian, Shuai Sun, Hong Huang, Yu Li, Hai Jin, Xing Xie ·

User interest exploration is an important and challenging topic in recommender systems, which alleviates the closed-loop effects between recommendation models and user-item interactions. Contextual bandit (CB) algorithms strive to make a good trade-off between exploration and exploitation so that users' potential interests have chances to expose. However, classical CB algorithms can only be applied to a small, sampled item set (usually hundreds), which forces the typical applications in recommender systems limited to candidate post-ranking, homepage top item ranking, ad creative selection, or online model selection (A/B test). In this paper, we introduce two simple but effective hierarchical CB algorithms to make a classical CB model (such as LinUCB and Thompson Sampling) capable to explore users' interest in the entire item space without limiting it to a small item set. We first construct a hierarchy item tree via a bottom-up clustering algorithm to organize items in a coarse-to-fine manner. Then we propose a hierarchical CB (HCB) algorithm to explore users' interest in the hierarchy tree. HCB takes the exploration problem as a series of decision-making processes, where the goal is to find a path from the root to a leaf node, and the feedback will be back-propagated to all the nodes in the path. We further propose a progressive hierarchical CB (pHCB) algorithm, which progressively extends visible nodes which reach a confidence level for exploration, to avoid misleading actions on upper-level nodes in the sequential decision-making process. Extensive experiments on two public recommendation datasets demonstrate the effectiveness and flexibility of our methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here