Shift-Reduce Constituent Parsing with Neural Lookahead Features

TACL 2017  ·  Jiangming Liu, Yue Zhang ·

Transition-based models can be fast and accurate for constituent parsing. Compared with chart-based models, they leverage richer features by extracting history information from a parser stack, which spans over non-local constituents. On the other hand, during incremental parsing, constituent information on the right hand side of the current word is not utilized, which is a relative weakness of shift-reduce parsing. To address this limitation, we leverage a fast neural model to extract lookahead features. In particular, we build a bidirectional LSTM model, which leverages the full sentence information to predict the hierarchy of constituents that each word starts and ends. The results are then passed to a strong transition-based constituent parser as lookahead features. The resulting parser gives 1.3% absolute improvement in WSJ and 2.3% in CTB compared to the baseline, given the highest reported accuracies for fully-supervised parsing.

PDF Abstract TACL 2017 PDF TACL 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods