Shapley Flow: A Graph-based Approach to Interpreting Model Predictions

27 Oct 2020  ·  Jiaxuan Wang, Jenna Wiens, Scott Lundberg ·

Many existing approaches for estimating feature importance are problematic because they ignore or hide dependencies among features. A causal graph, which encodes the relationships among input variables, can aid in assigning feature importance. However, current approaches that assign credit to nodes in the causal graph fail to explain the entire graph. In light of these limitations, we propose Shapley Flow, a novel approach to interpreting machine learning models. It considers the entire causal graph, and assigns credit to \textit{edges} instead of treating nodes as the fundamental unit of credit assignment. Shapley Flow is the unique solution to a generalization of the Shapley value axioms to directed acyclic graphs. We demonstrate the benefit of using Shapley Flow to reason about the impact of a model's input on its output. In addition to maintaining insights from existing approaches, Shapley Flow extends the flat, set-based, view prevalent in game theory based explanation methods to a deeper, \textit{graph-based}, view. This graph-based view enables users to understand the flow of importance through a system, and reason about potential interventions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here