Characterizing the Implicit Bias of Regularized SGD in Rank Minimization

12 Jun 2022  ·  Tomer Galanti, Zachary S. Siegel, Aparna Gupte, Tomaso Poggio ·

We study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight matrices when training deep neural networks. Our results show that training neural networks with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matrices. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict and observe empirically that weight decay is necessary to achieve this bias. Unlike previous literature, our analysis does not rely on assumptions about the data, convergence, or optimality of the weight matrices and applies to a wide range of neural network architectures of any width or depth. Finally, we empirically investigate the connection between this bias and generalization, finding that it has a marginal effect on generalization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods