Paper

Separate-and-Aggregate: A Transformer-based Patch Refinement Model for Knowledge Graph Completion

Knowledge graph completion (KGC) is the task of inferencing missing facts from any given knowledge graphs (KG). Previous KGC methods typically represent knowledge graph entities and relations as trainable continuous embeddings and fuse the embeddings of the entity $h$ (or $t$) and relation $r$ into hidden representations of query $(h, r, ?)$ (or $(?, r, t$)) to approximate the missing entities. To achieve this, they either use shallow linear transformations or deep convolutional modules. However, the linear transformations suffer from the expressiveness issue while the deep convolutional modules introduce unnecessary inductive bias, which could potentially degrade the model performance. Thus, we propose a novel Transformer-based Patch Refinement Model (PatReFormer) for KGC. PatReFormer first segments the embedding into a sequence of patches and then employs cross-attention modules to allow bi-directional embedding feature interaction between the entities and relations, leading to a better understanding of the underlying KG. We conduct experiments on four popular KGC benchmarks, WN18RR, FB15k-237, YAGO37 and DB100K. The experimental results show significant performance improvement from existing KGC methods on standard KGC evaluation metrics, e.g., MRR and H@n. Our analysis first verifies the effectiveness of our model design choices in PatReFormer. We then find that PatReFormer can better capture KG information from a large relation embedding dimension. Finally, we demonstrate that the strength of PatReFormer is at complex relation types, compared to other KGC models

Results in Papers With Code
(↓ scroll down to see all results)