Sensing-Resistance-Oriented Beamforming for Privacy Protection from ISAC Devices

8 Apr 2024  ·  Teng Ma, Yue Xiao, Xia Lei, Ming Xiao ·

With the evolution of integrated sensing and communication (ISAC) technology, a growing number of devices go beyond conventional communication functions with sensing abilities. Therefore, future networks are divinable to encounter new privacy concerns on sensing, such as the exposure of position information to unintended receivers. In contrast to traditional privacy preserving schemes aiming to prevent eavesdropping, this contribution conceives a novel beamforming design toward sensing resistance (SR). Specifically, we expect to guarantee the communication quality while masking the real direction of the SR transmitter during the communication. To evaluate the SR performance, a metric termed angular-domain peak-to-average ratio (ADPAR) is first defined and analyzed. Then, we resort to the null-space technique to conceal the real direction, hence to convert the optimization problem to a more tractable form. Moreover, semidefinite relaxation along with index optimization is further utilized to obtain the optimal beamformer. Finally, simulation results demonstrate the feasibility of the proposed SR-oriented beamforming design toward privacy protection from ISAC receivers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here