Self-Supervised State-Control through Intrinsic Mutual Information Rewards

25 Sep 2019  ·  Rui Zhao, Volker Tresp, Wei Xu ·

Learning to discover useful skills without a manually-designed reward function would have many applications, yet is still a challenge for reinforcement learning. In this paper, we propose Mutual Information-based State-Control (MISC), a new self-supervised Reinforcement Learning approach for learning to control states of interest without any external reward function. We formulate the intrinsic objective as rewarding the skills that maximize the mutual information between the context states and the states of interest. For example, in robotic manipulation tasks, the context states are the robot states and the states of interest are the states of an object. We evaluate our approach for different simulated robotic manipulation tasks from OpenAI Gym. We show that our method is able to learn to manipulate the object, such as pushing and picking up, purely based on the intrinsic mutual information rewards. Furthermore, the pre-trained policy and mutual information discriminator can be used to accelerate learning to achieve high task rewards. Our results show that the mutual information between the context states and the states of interest can be an effective ingredient for overcoming challenges in robotic manipulation tasks with sparse rewards. A video showing experimental results is available at https://youtu.be/cLRrkd3Y7vU

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here