Self-Supervised Global-Local Structure Modeling for Point Cloud Domain Adaptation With Reliable Voted Pseudo Labels

In this paper, we propose an unsupervised domain adaptation method for deep point cloud representation learning. To model the internal structures in target point clouds, we first propose to learn the global representations of unlabeled data by scaling up or down point clouds and then predicting the scales. Second, to capture the local structure in a self-supervised manner, we propose to project a 3D local area onto a 2D plane and then learn to reconstruct the squeezed region. Moreover, to effectively transfer the knowledge from source domain, we propose to vote pseudo labels for target samples based on the labels of their nearest source neighbors in the shared feature space. To avoid the noise caused by incorrect pseudo labels, we only select reliable target samples, whose voting consistencies are high enough, for enhancing adaptation. The voting method is able to adaptively select more and more target samples during training, which in return facilitates adaptation because the amount of labeled target data increases. Experiments on PointDA (ModelNet-10, ShapeNet-10 and ScanNet-10) and Sim-to-Real (ModelNet-11, ScanObjectNN-11, ShapeNet-9 and ScanObjectNN-9) demonstrate the effectiveness of our method.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here