Self-Supervised Generation of Spatial Audio for 360° Video

We introduce an approach to convert mono audio recorded by a 360° video camera into spatial audio, a representation of the distribution of sound over the full viewing sphere. Spatial audio is an important component of immersive 360° video viewing, but spatial audio microphones are still rare in current 360° video production. Our system consists of end-to-end trainable neural networks that separate individual sound sources and localize them on the viewing sphere, conditioned on multi-modal analysis from the audio and 360° video frames. We introduce several datasets, including one filmed ourselves, and one collected in-the-wild from YouTube, consisting of 360° videos uploaded with spatial audio. During training, ground truth spatial audio serves as self-supervision and a mixed down mono track forms the input to our network. Using our approach we show that it is possible to infer the spatial localization of sounds based only on a synchronized 360° video and the mono audio track.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here