Selective Sensing: A Data-driven Nonuniform Subsampling Approach for Computation-free On-Sensor Data Dimensionality Reduction

1 Jan 2021  ·  Zhikang Zhang, Kai Xu, Fengbo Ren ·

Designing an on-sensor data dimensionality reduction scheme for efficient signal sensing has always been a challenging task. Compressive sensing is a state-of-the-art sensing technique used for on-sensor data dimensionality reduction. However, the undesired computational complexity involved in the sensing stage of compressive sensing limits its practical application in resource-constrained sensor devices or high-data-rate sensor devices dealing with high-dimensional signals. In this paper, we propose a selective sensing framework that adopts the novel concept of data-driven nonuniform subsampling to reduce the dimensionality of acquired signals while retaining the information of interest in a computation-free fashion. Selective sensing adopts a co-optimization methodology to co-train a selective sensing operator with a subsequent information decoding neural network. We take image as the sensing modality and reconstruction as the information decoding task to demonstrate the 1st proof-of-concept of selective sensing. The experiment results on CIFAR10, Set5 and Set14 datasets show that selective sensing can achieve an average reconstruction accuracy improvement in terms of PSNR/SSIM by 3.73dB/0.07 and 9.43dB/0.16 over compressive sensing and uniform subsampling counterparts across the compression ratios of 4-32x, respectively. Source code is available at https://figshare.com/s/519a923fae8f386d7f5b

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here