Selection of Random Walkers that Optimizes the Global Mean First-Passage Time for Search in Complex Networks

12 Dec 2018  ·  Mucong Ding, Kwok Yip Szeto ·

We design a method to optimize the global mean first-passage time (GMFPT) of multiple random walkers searching in complex networks for a general target, without specifying the property of the target node. According to the Laplace transformed formula of the GMFPT, we can equivalently minimize the overlap between the probability distribution of sites visited by the random walkers. We employ a mutation only genetic algorithm to solve this optimization problem using a population of walkers with different starting positions and a corresponding mutation matrix to modify them. The numerical experiments on two kinds of random networks (WS and BA) show satisfactory results in selecting the origins for the walkers to achieve minimum overlap. Our method thus provides guidance for setting up the search process by multiple random walkers on complex networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here