Scheduling for Cellular Federated Edge Learning with Importance and Channel Awareness

1 Apr 2020  ·  Jinke Ren, Yinghui He, Dingzhu Wen, Guanding Yu, Kaibin Huang, Dongning Guo ·

In cellular federated edge learning (FEEL), multiple edge devices holding local data jointly train a neural network by communicating learning updates with an access point without exchanging their data samples. With very limited communication resources, it is beneficial to schedule the most informative local learning updates. In this paper, a novel scheduling policy is proposed to exploit both diversity in multiuser channels and diversity in the "importance" of the edge devices' learning updates. First, a new probabilistic scheduling framework is developed to yield unbiased update aggregation in FEEL. The importance of a local learning update is measured by its gradient divergence. If one edge device is scheduled in each communication round, the scheduling policy is derived in closed form to achieve the optimal trade-off between channel quality and update importance. The probabilistic scheduling framework is then extended to allow scheduling multiple edge devices in each communication round. Numerical results obtained using popular models and learning datasets demonstrate that the proposed scheduling policy can achieve faster model convergence and higher learning accuracy than conventional scheduling policies that only exploit a single type of diversity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here