SCaLE: Supervised and Cascaded Laplacian Eigenmaps for Visual Object Recognition Based on Nearest Neighbors

CVPR 2013  ·  Ruobing Wu, Yizhou Yu, Wenping Wang ·

Recognizing the category of a visual object remains a challenging computer vision problem. In this paper we develop a novel deep learning method that facilitates examplebased visual object category recognition. Our deep learning architecture consists of multiple stacked layers and computes an intermediate representation that can be fed to a nearest-neighbor classifier. This intermediate representation is discriminative and structure-preserving. It is also capable of extracting essential characteristics shared by objects in the same category while filtering out nonessential differences among them. Each layer in our model is a nonlinear mapping, whose parameters are learned through two sequential steps that are designed to achieve the aforementioned properties. The first step computes a discrete mapping called supervised Laplacian Eigenmap. The second step computes a continuous mapping from the discrete version through nonlinear regression. We have extensively tested our method and it achieves state-of-the-art recognition rates on a number of benchmark datasets.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here