Scale-Aware Crowd Count Network with Annotation Error Correction

28 Dec 2023  ·  Yi-Kuan Hsieh, Jun-Wei Hsieh, Yu-Chee Tseng, Ming-Ching Chang, Li Xin ·

Traditional crowd counting networks suffer from information loss when feature maps are downsized through pooling layers, leading to inaccuracies in counting crowds at a distance. Existing methods often assume correct annotations during training, disregarding the impact of noisy annotations, especially in crowded scenes. Furthermore, the use of a fixed Gaussian kernel fails to account for the varying pixel distribution with respect to the camera distance. To overcome these challenges, we propose a Scale-Aware Crowd Counting Network (SACC-Net) that introduces a ``scale-aware'' architecture with error-correcting capabilities of noisy annotations. For the first time, we {\bf simultaneously} model labeling errors (mean) and scale variations (variance) by spatially-varying Gaussian distributions to produce fine-grained heat maps for crowd counting. Furthermore, the proposed adaptive Gaussian kernel variance enables the model to learn dynamically with a low-rank approximation, leading to improved convergence efficiency with comparable accuracy. The performance of SACC-Net is extensively evaluated on four public datasets: UCF-QNRF, UCF CC 50, NWPU, and ShanghaiTech A-B. Experimental results demonstrate that SACC-Net outperforms all state-of-the-art methods, validating its effectiveness in achieving superior crowd counting accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here