Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF)

ICML 2018  ·  Trefor W. Evans, Prasanth B. Nair ·

We introduce a kernel approximation strategy that enables computation of the Gaussian process log marginal likelihood and all hyperparameter derivatives in $\mathcal{O}(p)$ time. Our GRIEF kernel consists of $p$ eigenfunctions found using a Nystrom approximation from a dense Cartesian product grid of inducing points. By exploiting algebraic properties of Kronecker and Khatri-Rao tensor products, computational complexity of the training procedure can be practically independent of the number of inducing points. This allows us to use arbitrarily many inducing points to achieve a globally accurate kernel approximation, even in high-dimensional problems. The fast likelihood evaluation enables type-I or II Bayesian inference on large-scale datasets. We benchmark our algorithms on real-world problems with up to two-million training points and $10^{33}$ inducing points.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here