Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride

4 Mar 2021  ·  Chi Li, Noah Mendelson, Ritika Ritika, Yong-Liang Chen, Zai-Quan Xu, Milos Toth, Igor Aharonovich ·

We demonstrate the fabrication of large-scale arrays of single photon emitters (SPEs) in hexagonal boron nitride (hBN). Bottom-up growth of hBN onto nanoscale arrays of dielectric pillars yields corresponding arrays of hBN emitters at the pillar sites. Statistical analysis shows that the pillar diameter is critical for isolating single defects, and diameters of ~250 nm produce a near-unity yield of a single emitter at each pillar site. Our results constitute a promising route towards spatially-controlled generation of hBN SPEs and provide an effective and efficient method to create large scale SPE arrays. The results pave the way to scalability and high throughput fabrication of SPEs for advanced quantum photonic applications.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Applied Physics Optics