Sample complexity of learning Mahalanobis distance metrics

NeurIPS 2015  ·  Nakul Verma, Kristin Branson ·

Metric learning seeks a transformation of the feature space that enhances prediction quality for the given task at hand. In this work we provide PAC-style sample complexity rates for supervised metric learning. We give matching lower- and upper-bounds showing that the sample complexity scales with the representation dimension when no assumptions are made about the underlying data distribution. However, by leveraging the structure of the data distribution, we show that one can achieve rates that are fine-tuned to a specific notion of intrinsic complexity for a given dataset. Our analysis reveals that augmenting the metric learning optimization criterion with a simple norm-based regularization can help adapt to a dataset's intrinsic complexity, yielding better generalization. Experiments on benchmark datasets validate our analysis and show that regularizing the metric can help discern the signal even when the data contains high amounts of noise.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here