SAM-PARSER: Fine-tuning SAM Efficiently by Parameter Space Reconstruction

28 Aug 2023  ·  Zelin Peng, Zhengqin Xu, Zhilin Zeng, Xiaokang Yang, Wei Shen ·

Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images. However, fine-tuning SAM for downstream segmentation tasks under different scenarios remains a challenge, as the varied characteristics of different scenarios naturally requires diverse model parameter spaces. Most existing fine-tuning methods attempt to bridge the gaps among different scenarios by introducing a set of new parameters to modify SAM's original parameter space. Unlike these works, in this paper, we propose fine-tuning SAM efficiently by parameter space reconstruction (SAM-PARSER), which introduce nearly zero trainable parameters during fine-tuning. In SAM-PARSER, we assume that SAM's original parameter space is relatively complete, so that its bases are able to reconstruct the parameter space of a new scenario. We obtain the bases by matrix decomposition, and fine-tuning the coefficients to reconstruct the parameter space tailored to the new scenario by an optimal linear combination of the bases. Experimental results show that SAM-PARSER exhibits superior segmentation performance across various scenarios, while reducing the number of trainable parameters by $\approx 290$ times compared with current parameter-efficient fine-tuning methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods