Safe Learning-based Observers for Unknown Nonlinear Systems using Bayesian Optimization

12 May 2020  ·  Ankush Chakrabarty, Mouhacine Benosman ·

Data generated from dynamical systems with unknown dynamics enable the learning of state observers that are: robust to modeling error, computationally tractable to design, and capable of operating with guaranteed performance. In this paper, a modular design methodology is formulated, that consists of three design phases: (i) an initial robust observer design that enables one to learn the dynamics without allowing the state estimation error to diverge (hence, safe); (ii) a learning phase wherein the unmodeled components are estimated using Bayesian optimization and Gaussian processes; and, (iii) a re-design phase that leverages the learned dynamics to improve convergence rate of the state estimation error. The potential of our proposed learning-based observer is demonstrated on a benchmark nonlinear system. Additionally, certificates of guaranteed estimation performance are provided.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here