Safe Feature Elimination for Non-Negativity Constrained Convex Optimization

25 Jul 2019  ·  James Folberth, Stephen Becker ·

Inspired by recent work on safe feature elimination for $1$-norm regularized least-squares, we develop strategies to eliminate features from convex optimization problems with non-negativity constraints. Our strategy is safe in the sense that it will only remove features/coordinates from the problem when they are guaranteed to be zero at a solution. To perform feature elimination we use an accurate, but not optimal, primal-dual feasible pair, making our methods robust and able to be used on ill-conditioned problems. We supplement our feature elimination problem with a method to construct an accurate dual feasible point from an accurate primal feasible point; this allows us to use a first-order method to find an accurate primal feasible point, then use that point to construct an accurate dual feasible point and perform feature elimination. Under reasonable conditions, our feature elimination strategy will eventually eliminate all zero features from the problem. As an application of our methods we show how safe feature elimination can be used to robustly certify the uniqueness of non-negative least-squares (NNLS) problems. We give numerical examples on a well-conditioned synthetic NNLS problem and a on set of 40000 extremely ill-conditioned NNLS problems arising in a microscopy application.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here